If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=2704
We move all terms to the left:
3x^2-(2704)=0
a = 3; b = 0; c = -2704;
Δ = b2-4ac
Δ = 02-4·3·(-2704)
Δ = 32448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32448}=\sqrt{10816*3}=\sqrt{10816}*\sqrt{3}=104\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-104\sqrt{3}}{2*3}=\frac{0-104\sqrt{3}}{6} =-\frac{104\sqrt{3}}{6} =-\frac{52\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+104\sqrt{3}}{2*3}=\frac{0+104\sqrt{3}}{6} =\frac{104\sqrt{3}}{6} =\frac{52\sqrt{3}}{3} $
| -14+x=2x-6 | | N+3=2n+11 | | .2(46+t)=5t+2 | | 26-3x=51-8x | | 2x+9=4(3x-2)+7 | | 5(q-1)=-3 | | 9/2+q=19/2 | | -18=2(4x-5)+8 | | -7=5(2x-1)+8 | | 3x+6=2(x+4) | | 5(p+3)=2 | | 5x+50=15-2x | | 2(3x-4)=6-(2x-5) | | 3(a+3)=10 | | 22-4x=4 | | -m/15=-14 | | 2(2x+3)=2x-16 | | 0.8(82+t)=5t+63.5 | | 5x+4=44−3x | | 3.3c=2.2 | | 21x^2+37x+10=0 | | 3x(x-3)=12 | | 3(x-5)=-111 | | 1.4n+4.03=2.852-0.5n | | 9(x+10)=−99 | | 5(x−8)=20 | | 2x-10=30-2x | | 3x-5+8x-15+2x+4+90=360 | | 8(x-7=-16 | | 3x=19-2x | | 8.2-3.5t=9.39 | | .33(3x+6)+2x=6x+4-2x |